Swarm Chemistry Evolving

نویسنده

  • Hiroki Sayama
چکیده

1. There are now two categories of particles, active (moving and interacting kinetically) and passive (remaining still and inactive). An active particle holds a recipe of the swarm (i.e., a list of kinetic parameter sets) in it (Fig. 1(a)). 2. A recipe is transmitted from an active particle to a passive particle when they collide, making the latter active (Fig. 1(b)). 3. The activated particle differentiates randomly into a type specified by one of the kinetic parameter sets in the recipe given to it (Fig. 1(c)). 4. Active particles randomly re-differentiate with small probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards the Implementation of Evolving Autopoietic Artificial Agents

We report modifications to the SCL model(McMullin and Varela, 1997), an artificial chemistry in Swarm designed to support autopoietic agents. The aim of these modifications is to improve on the longevity of the agents and to implement growth. We demonstrate by means of two simulation runs that the improvements indeed have the desired effects.

متن کامل

Evolving Aggregation Behaviors for Swarm Robotic Systems

EVOLVING AGGREGATION BEHAVIORS FOR SWARM ROBOTIC SYSTEMS: A SYSTEMATIC CASE STUDY

متن کامل

Comparison of Genetic Algorithm and Particle Swarm Optimizer When Evolving a Recurrent Neural Network

This paper compares the performance of GAs and PSOs in evolving weights of a recurrent neural network. The algorithms are tested on multiple network topologies. Both algorithms produce successful networks. The GA is more successful evolving larger networks and the PSO is more successful on smaller networks.

متن کامل

Evolving the Structure of the Particle Swarm Optimization Algorithms

A new model for evolving the structure of a Particle Swarm Optimization (PSO) algorithm is proposed in this paper. The model is a hybrid technique that combines a Genetic Algorithm (GA) and a PSO algorithm. Each GA chromosome is an array encoding a meaning for updating the particles of the PSO algorithm. The evolved PSO algorithm is compared to a human-designed PSO algorithm by using ten artifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010